تشخیص برگ با استفاده از الگوریتم های هوش مصنوعی

پایان نامه
چکیده

گیاهان از پرکاربردترین منابع برای انسان ها در زمینه های مختلف محسوب می شوند، لذا تمایز بین گونه های گیاهی امری مهم بوده و از آن به عنوان سیستم تشخیص گیاه یاد می شود. تاکنون این وظیفه توسط گیاه شناسان خبره صورت می گرفت که امری طاقت فرسا و زمانبر در کنار نقصان حافظه و خطای انسانی محسوب می شد لذا محققان کوشیدند با استفاده از الگوریتم های هوش مصنوعی معایب مذکور را رفع نمایند. از آنجا که بررسی های گیاه شناسی، برگ گیاه را برای تشخیص نوع گونه کافی و لازم می داند، می توان فقط با تصویر برداری از برگ و سپس استخراج مشخصه مناسب به نتایج دلخواه دست یافت. در حالت کلی مشخصه های مفید یک برگ در سه دسته جداگانه قرار می گیرند. دسته اول مشخصات عمومی برگ شامل ابعاد برگ، اندازه حفره و یا مساحت برگ، دسته دوم مشخصات محلی شامل بافت یا ساختار رگبرگ ها و در نهایت دسته سوم حاوی ویژگیهای دندانه برگ می باشد. موارد فوق در مقالات مختلف آزموده شده است ولی کارایی آنها محدود به فرضیات مقاله، برای گونه های خاص و در شرایط کاملا ایده آل می باشد. لذا در این پژوهش، علاوه بر تعریف مشخصه های مفید در هر دسته، پیشنهاد می گردد که مشخصه های سه دسته فوق ترکیب شده و سیستمی برای تشخیص شمار زیادی از گونه های گیاهی ارائه دهیم. لازم بذکر است که در این پژوهش 6 مشخصه محلی مبتنی بر بافت توسط محاسبات کاملا ریاضی استخراج می شود که بایستی آنها را بر روی قطعه میانی از برگ (بدون وجود رگبرگ اصلی و دندانه) اعمال نمود. برای دسته عمومی نیز 4 مشخصه که برگرفته از مقالات اخیر سایر محققین بوده اند محاسبه می گردد و برای دسته دندانه برگ نیز روشی کاملا بدیع با استفاده از تبدیل موجک ارائه شده است که به استخراج 4 مشخصه دیگر ختم خواهد شد. در مجموع بردار مشخصه حاوی 14 عنصر تشکیل خواهد شد که با استفاده از الگوریتم k-نزدیکترین همسایه آنها را دسته بندی می نماییم. نتایج به دست آمده گواه عملکرد صحیح برای شمار زیادی از گونه ها و در شرایط مختلف نظیر آفت، تغییر فصول و نورپردازی می باشد.

۱۵ صفحه ی اول

برای دانلود 15 صفحه اول باید عضویت طلایی داشته باشید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

تشخیص بهتر آپاندیسیت حاد با استفاده از هوش مصنوعی

زمینه: آپاندیسیت حاد، شایع‌ترین علت مراجعۀ بیماران با دردهای شکمی به اورژانس بیمارستان‌ها و آپاندکتومی شایع‌ترین عمل جراحی اورژانس است. با وجود ابداع روش‌های گوناگون تشخیصی، میزان آپاندکتومی غیرضروری قابل توجه است. استفاده از روش‌های هوش مصنوعی و یادگیری ‌ماشینی می‌تواند فرآیند تشخیص و درمان را بهبود بخشد. در این پژوهش از سیستم ماشین‌بردار پشتیبان جهت کمک به تشخیص آپاندیسیت حاد با هدف افزایش صح...

متن کامل

راهکار ترکیبی نوین جهت تشخیص نفوذ در شبکه‌های کامپیوتری با استفاده از الگوریتم-های هوش محاسباتی

In this paper, a novel hybrid method is proposed for intrusion detection in computer networks using combination of misuse-based and anomaly-based detection models with the aim of performance improvement. In the proposed hybrid approach, a set of algorithms and models is employed. The selection of input features is performed using shuffled frog-leaping (SFL) algorithm. The misuse detection modul...

متن کامل

تشخیص ناباروری مردان از روی عوامل محیطی و سبک زندگی با استفاده از الگوریتم‌های هوش مصنوعی

دریافت: 94/3/11 پذیرش: 95/2/14 مقدمه: مشکل ناباروری به خصوص در میان مردان یکی از مسایلی است که در دهه‌های اخیر به آن توجه خاصی شده است. ناباروری در مردان می‌تواند از عوامل مختلفی ناشی شود. تحقیقات گسترده‌ای در خصوص تأثیر عوامل محیطی و سبک زندگی افراد بر روی کیفیت اسپرم مردان و ناباروری آن‌ها انجام شده است. در این بین روش‌های هوش مصنوعی به عنوان یک سیستم تصمیم‌یار هوشمند می‌توانند کمک شایانی در...

متن کامل

تشخیص آنامولی های TEC قبل از وقوع زلزله های بزرگ با استفاده از شبکه عصبی مصنوعی

وقوع زلزله علاوه بر تغییر در هندسه و فیزیک پوسته زمین تأثیرات دیگری را نیز به همراه دارد. از آن جمله، تأثیر بر لایه یونسفر می‍باشد که خود را به‌صورت تغییر در میزان الکترون، چگالی یون‌ها، میدان‌های الکتریکی و مغناطیسی این لایه نشان می‌دهد. هر پارامتر ژئوفیزیکی و ژئوشیمیایی در لایه‌های لیتوسفر، اتمسفر و یونسفر زمین که قبل از وقوع زلزله تغییراتی در آن پدید آید به‌عنوان پیش‌نشانگر شناخته می‌شود...

متن کامل

تشخیص حمله‌های صرعی از روی ضرایب موجک با استفاده از شبکه‌های عصبی مصنوعی و الگوریتم بهینه‌سازی انبوه ذرات (PSO)

سیگنال‌های الکتروانسفالوگرام (EEG)[i]، فعالیت‌های الکتریکی سلول‌های عصبی مغز را نشان می‌دهند. استخراج سیگنال EEG روشی غیرتهاجمی است که برای تشخیص فعالیت‌های غیرعادی مغز مفید است. تشنج یکی از انواع فعالیت‌های غیرعادی مغز و مهم‌ترین تظاهر بیماری صرع است. دشارژهای صرعی‌شکل (امواج سوزنی)[ii] مهم‌ترین مشخصة سیگنال‌های فرد درحال تشنج است. با آشکارسازی امواج...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


نوع سند: پایان نامه

وزارت علوم، تحقیقات و فناوری - دانشگاه صنعتی شاهرود

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023